2,067 research outputs found

    Scattering lengths of Nambu-Goldstone bosons off DD mesons and dynamically generated heavy-light mesons

    Full text link
    Recent lattice QCD simulations of the scattering lengths of Nambu-Goldstone bosons off the DD mesons are studied using unitary chiral perturbation theory. We show that the Lattice QCD data are better described in the covariant formulation than in the heavy-meson formulation. The Ds0∗(2317)D^*_{s0}(2317) can be dynamically generated from the coupled-channels DKDK interaction without \textit{a priori} assumption of its existence. A new renormalization scheme is proposed which manifestly satisfies chiral power counting rules and has well-defined behavior in the infinite heavy-quark mass limit. Using this scheme we predict the heavy-quark spin and flavor symmetry counterparts of the Ds0∗(2317)D^*_{s0}(2317).Comment: 22 pages, 5 figures; to appear in Physical Review

    Thermodynamics of a three-flavor nonlocal Polyakov--Nambu--Jona-Lasinio model

    Full text link
    The present work generalizes a nonlocal version of the Polyakov loop-extended Nambu and Jona-Lasinio (PNJL) model to the case of three active quark flavors, with inclusion of the axial U(1) anomaly. Gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop. The thermodynamics of the nonlocal PNJL model accounts for both chiral and deconfinement transitions. Our results obtained in mean-field approximation are compared to lattice QCD results for Nf=2+1N_\text{f}=2+1 quark flavors. Additional pionic and kaonic contributions to the pressure are calculated in random phase approximation. Finally, this nonlocal 3-flavor PNJL model is applied to the finite density region of the QCD phase diagram. It is confirmed that the existence and location of a critical point in this phase diagram depends sensitively on the strength of the axial U(1) breaking interaction.Comment: 31 pages, 15 figures, minor changes compared to v

    Scattering of decuplet baryons in chiral effective field theory

    Full text link
    A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (BB) and decuplet baryons (DD) for the transitions BB→BBBB\to BB, BB↔DBBB\leftrightarrow DB, DB→DBDB\to DB, BB↔DDBB\leftrightarrow DD, DB↔DDDB\leftrightarrow DD, and DD→DDDD\to DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ\Omega\Omega and NΩN\Omega scattering. Implications of our results pertinent to the quest for dibaryons are discussed.Comment: 26 pages, 6 figures; minor corrections in the text, references adde

    Hyperons in nuclear matter from SU(3) chiral effective field theory

    Full text link
    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Lambda and Sigma hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Sigma-nuclear potential and a weak Lambda-nuclear spin-orbit force.Comment: 13 pages, 10 figures, 5 tables; v2: published version, minor change

    Variational calculations for K-few-nucleon systems

    Full text link
    Deeply bound KNN, KNNN and KNNNN states are discussed. The effective force exerted by the K meson on the nucleons is calculated with static nucleons. Next the binding energies are obtained by solving the Schrodinger equation or by variational calculations. The dominant attraction comes from the S-wave Lambda(1405) and an additional contribution is due to Sigma(1385). The latter state is formed at the nuclear peripheries and absorbs a sizable piece of the binding energy. It also generates new branches of quasi-bound states. The lowest binding energies based on a phenomenological KN input fall into the 40-80 MeV range for KNN, 90-150 MeV for KNNN and 120-220 MeV for K-alpha systems. The uncertainties are due to unknown KN interactions in the distant subthreshold energy region.Comment: 19 pages, 1 figur

    Chiral Dynamics of Deeply Bound Pionic Atoms

    Get PDF
    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and the notorious "missing repulsion" in the pion-nuclear s-wave optical potential is accounted for. The connection with the in-medium change of the pion decay constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure
    • …
    corecore